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Abstract

In this paper, a fast strategy for determining the total antioxidant capacity of Chinese green tea extracts is developed. This strategy includes the
use of experimental techniques, such as fast high-performance liquid chromatography (HPLC) on monolithic columns and a spectrophotometric
approach to determine the total antioxidant capacity of the extracts. To extract the chemically relevant information from the obtained data,
chemometrical approaches are used. Among them there are correlation optimized warping (COW) to align the chromatograms, robust principal
c ast squares
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omponent analysis (robust PCA) to detect outliers, and partial least squares (PLS) and uninformative variable elimination partial le
UVE-PLS) to construct a reliable multivariate regression model to predict the total antioxidant capacity from the fast chromatogra

2005 Elsevier B.V. All rights reserved.

eywords: Green tea; Antioxidant capacity; Monolithic columns; Warping; Aligning; Multivariate calibration; PLS

. Introduction

The dry leaves of the green tea plantCamellia sinensis
L.) are known to contain flavanols with antioxidant capacity
uch as catechin, (−)-epicatechin, (−)-epicatechin-3-gallate,
−)-epigallocatechin and (−)-epigallocatechin-3-gallate
1,2]. The consumption of green tea is therefore associated
ith protective effects against coronary heart diseases and
ancers of the lung, forestomach, esophagus, duodenum,
ancreas, liver, breast, colon, and skin, induced by chemical
arcinogens[1]. The total antioxidant capacity of a green
ea extract is an important quality criterion and can be de-
ermined with a decolorization assay, the Trolox equivalent
ntioxidant capacity (TEAC) method, in which the antiox-

dant capacity is expressed as the concentration of a Trolox
olution with equal antioxidant capacity[3]. Besides the
avanols, the green tea may contain many other components,
lso contributing to the safety and quality of the extract.
o avoid a time-consuming qualitative and quantitative

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.

analysis of each extract compound individually, fingerp
technology was introduced for quality control. Fingerp
chromatograms are developed and compared to that of a
dardized extract to achieve authentication, identification
quality control of the herb[4,5]. Combining the informatio
from the green tea fingerprint and the TEAC assay allo
good determination of the quality of the tea extract. An ap
cation can be found in the paper by Koleva et al.[6], where a
post-column TEAC assay is presented to measure the a
idant capacity of HPLC separated analytes of o.a. Rose
extracts. However, for high-throughput applications sim
and fast methods are preferred and in this paper,
therefore investigated whether the total antioxidant cap
of green tea extracts can simply be predicted from their
chromatograms, developed on monolithic silica column
was earlier shown that fast, robust and repeatable separ
can be obtained at high flow rates (up to 9 ml/min) on th
columns, allowing to speed up the analysis compare
conventional particle-packed HPLC columns[7].

A multivariate calibration model relating the chroma
graphic data with the TEAC data is built. A similar stu
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden). but based on NIR spectra, instead of chromatograms,
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is presented by Luypaert et al.[8]. However, chro-
matograms have the advantage that qualitative and quanti-
tative information of given compounds can be retrieved, if
needed.

In this paper, the total antioxidant capacity of 55 Chinese
green tea extracts is determined using the TEAC assay. Si-
multaneously, these extracts were chromatographed with two
fast HPLC methods (analysis times of 11 and 2 min), result-
ing in nearly baseline separated and only partially separated
peaks, respectively. The aim of our work is to verify the po-
tential use of fast chromatograms in the construction of mul-
tivariate models relating the chromatographic profiles with
the antioxidant capacity of green tea. Multivariate calibration
models such as PLS and UVE-PLS[9,10] were constructed
for the short and long chromatograms. Due to instability of
the HPLC instrument as well as small mobile phase varia-
tions, peak shifts were observed. Therefore, prior to model
building, the chromatograms were aligned using correlation
optimized warping (COW)[11–13]. In order to detect the
presence of outliers in the data, robust principal component
analysis (robust PCA)[14–16]is applied.

2. Theory

2.1. TEAC assay
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dynamic time warping[17], parametric time warping (PTW)
[18,19], peak alignment by a genetic algorithm (PAGA)[20]
and fuzzy warping[21]. In our application correlation op-
timized warping, COW, is used[11–13]. COW is a method
which does not require peak detection. It aligns two signals
(e.g., chromatograms) by means of piecewise linear stretch-
ing and compression of the chromatogram to align in order
to match it as good as possible with a target chromatogram.
At the beginning of the procedure both signals, the profile to
be aligned, P, and the target profile, T, are divided into a user-
specified number of sections,N. Each section in the profile P
is warped, what means that its length is stretched or shortened
by shifting the position of its section end point by a limited
number of data points, defined by the slack parameter,t. The
slack allows the section end points to shift from−t to t points.
For each section of P, the stretched or shortened sections are
interpolated to the length of the corresponding section in T
and the correlation coefficients between them are computed.
The correlation coefficients allow to score a warping solution
constructed as the cumulative sum of the correlation coeffi-
cients obtained for the previous sections. For every possible
end point of a section (from−t to t) always the highest value
of the cumulative function is stored. After examining all pos-
sible end points of all sections, a global warping solution is
constructed. It is found starting from the last section back-
wards, by determining the maximal value of the objective
f tion.
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In this study the Trolox equivalent antioxidant cap
ty (TEAC) assay, described by Re et al.[3], is used
ith slight modifications (see Section3). The TEAC as
ay measures the capacity of a compound to scav
he blue–green ABTS cationic radical resulting in a co
ess product[3]. The acronym ABTS•+ denotes 2,2′-azino-
is-(3-ethylbenzothiazoline-6-sulfonic acid). The amoun
BTS•+ scavenged by the antioxidants in the green tea

ract is measured by the degree of decolorization, mea
pectrophotometrically at 729 nm. In this study, the TE
alue reflects the scavenging capacity of 1% (m/v) gree
xtract expressed as the equivalent concentration (in
f Trolox, a water-soluble Vitamin E analogue. More det
bout the TEAC assay can be found in ref.[3].

.2. Correlation optimized warping

The correlation optimized warping, COW, aims to c
ect peak shifts along the time axis in chromatogra
here are a few reasons causing this phenomenon. A

hem there are variations in mobile phase composition,
mn ageing and instrument instability. If peak shifts
ur, the chromatograms must be aligned to ensure a p
hemometrical treatment of the data. This means that
hromatograms are placed as rows of the data matrix
pexes of the corresponding peaks ought to be in the
olumns.

Several aligning (warping) techniques of analytical
als are described in the literature. Among them there
unction and its corresponding end point for every sec
more detailed description of the COW algorithm can

ound in refs.[11–13].

.3. Leverage object and outlier detection

In order to detect objects with extreme characteristic
he space of chromatograms (X) and outliers in TEAC value
y), robust PCA and histograms are used, respectively
reme objects have to be identified and removed since
ffect to a large extent the result of the data analysis. An
ortant tool for visualizing data structure is principal com
ent analysis[10], one of the most often applied dimensi
lity reduction methods. With PCA it is usually possible
roject original data variables onto a set of a few new feat
o-called principal components, that are mutually orthog
nd are linear combinations of the original variables[10]. The
Cs are constructed in order to maximize the descriptio

he data variance, and thus, the first few PCs represe
ajority of the data variance, whereas the remaining
re related to random noise. Because the extracted PCs

mize the data variance, PCA is sensitive to the presen
utlying objects, and often the PCs reveal the presen
typical objects. In order to identify objectively atypical

ects, one can apply robust PCA, obtained by substitutin
ariance criterion by a so-called robust scale[14–16]. Robus
CA is regarded as a model aiming to describe well the
ajority. With this assumption outlier detection is poss
ased on the residuals from the robust PCA model. Ta

nto account the distance of an object from the data maj
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Fig. 1. The score diagnostic plot of the 110 long chromatograms. The or-
thogonal distance is plotted vs. the robust distance. The cut-off values are
determined in the space of five rPC’s.

(robust distance) and its distance from the robust PCA model
space (orthogonal distance) two cut-off values are proposed
[14,15], as illustrated inFig. 1. Samples that exceed cut-off
values for both distances are bad leverage objects (quadrant
I in Fig. 1) because they are far from the data majority and
also from the model’s space. Objects that are only far from
the data majority but close to model’s space are good lever-
age objects (quadrant II), contrary to high-residual objects
that do not fit the robust model and exceed the cut-off value
for orthogonal distance (quadrant IV). Schematically, three
types of leverage objects inX-space are presented inFig. 1.
A more detailed description of the robust PCA algorithm can
be found in refs.[14–16].

2.4. Multivariate regression

2.4.1. Partial least squares (PLS)
In partial least squares regression, PLS, a dependent vari-

able,y, is modeled using latent variables, maximizing the co-
variance betweenX andy. The PLS model can be presented
as follows[22,23]:

X = TPT + E (1)

y = Tq + f (2)

w
a
d
v

f

y

w
s r the

calibration samples, andb(p, 1) is the vector of PLS regres-
sion coefficients computed as:

b = Pq (4)

The optimal model complexity, i.e., the number of latent
factors in the PLS model, can be determined by the leave-one-
out cross-validation procedure (LOO-CV). During LOO-CV,
eachith object of the data set is left out once, and for the
remaining objects the PLS model is built. Then, the root
mean squared error of cross-validation (RMSECV) is com-
puted for PLS models with different numbers of latent factors
[22]:

RMSECV(f ) =
√√√√ N∑

i=1

(ŷCV,i − yi)2

N
(5)

whereyi is the measured response of theith sample, ˆyCV,i

is a predicted response from a calibration equation ob-
tained for the data without theith sample,N is the num-
ber of calibration samples, andf denotes number of latent
factors.

The optimal complexity of the PLS model corresponds
to the number of latent factors resulting in the lowest RM-
SECV. Additionally, the PLS model can be validated with an
independent test set for which the root mean squared error of
p
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hereX(n, p) represents the data matrix, vectory(n, 1) is
dependent variable,T(n, n) is the score matrix,PT(n, p)

enotes the transposed loading matrix,q(n, 1) is a loading
ector,E(n, p) andf(n, 1) are the residuals.

In order to predictyi for a new chromatogramxi(1,p), the
ollowing equation can be used:

ˆ i = ȳ + xib (3)

here ŷi is the predicted dependent value for theith new
ample, ¯y denotes the mean of the dependent values fo
rediction (RMSEP) is computed as[22]:

MSEP=
√√√√ Nt∑

i=1

(ŷt
i − yt

i)
2

Nt
(6)

In Eq. (6), Nt is the number of test set samples, ˆyt
i andyt

i

re the predicted and measured response values for th
et samples[23].

.4.2. Uninformative variable elimination partial least
quares (UVE-PLS)

The uninformative variable elimination-partial le
quares approach, UVE-PLS, relies on the principle o
LS method and aims to remove uninformative variab

.e., the variables not more informative for modeling t
oise. The main steps of UVE-PLS can be summarize

ollows [9]:

1) find the optimal complexity of the PLS model using
cross-validation procedure;

2) simulate a matrixR(n, r) with r artificial variables a
columns (wherer > 300), with numbers drawn from
normal distribution and multiplied by a small const
10−10;

3) augment the original dataX(n, p) with matrixR to form
XR(n, p + r);

4) constructn PLS models for the augmented data ma
with leave-one-out cross-validation, and storen vectors
of regression coefficients,b, in a matrixB of a size (n,
p + r);
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(5) for every regression coefficient, define its stability coef-
ficient as the ratio of the column mean and the column
standard deviation ofB;

(6) define a cut-off value to distinguish between informative
and uninformative variables as the absolute value of the
maximal stability of the regression coefficients describ-
ing artificial variables;

(7) remove from the original data matrixX all the variables
for which the absolute value of the stability coefficient is
below the cut-off value;

(8) construct a final PLS model for the data containing in-
formative variables only.

3. Experimental

3.1. Instruments, chemicals and mobile phases

3.1.1. Instruments
The high-performance liquid chromatography (HPLC)

system consists of a L-7100 pump, L-7612 solvent degasser,
L-7250 autosampler, L-7360 oven, L-7400 UV detector and
a D-7000 interface from Merck-Hitachi (Tokyo, Japan). The
volume and path length of the UV detector are 17�l and
1 cm respectively. This system is operated with the LaChrom
D-7000 HPLC Manager Software (Merck-Hitachi). The col-
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2% to 26% within 10 min and remains constant at 26%. The
analysis times are 2 and 11 min, respectively.

3.1.4. Column
The stationary phase consists of a Chromolith SpeedROD

(50 mm× 4.6 mm) and a Performance (100 mm× 4.6 mm)
column both RP-18e from Merck which are coupled in line
with a column coupler (Merck). A Chromolith guard col-
umn RP-18e (5 mm× 4.6 mm, Merck) was placed before the
analytical ones.

3.1.5. Software
All data processing methods (COW, robust PCA, PLS

and UVE-PLS) are done with subroutines developed un-
der MatlabTM 5.3 software (The MathWorks Inc., Natick,
MA). Computations were performed on a computer with a
1000 mHz Athlon processor and 256 MB RAM.

3.2. Preparation of the green tea extracts, ABTS•+ and
Trolox solutions

The 55 Chinese green teas were purchased in several Chi-
nese stores. The extracts were prepared as follows: 2.0 g
of dry green tea leaves are milled during 3× 10 s with a
Moulinette 320 mixer (Moulinex, France) and sieved trough
a 500�m DIN 4188 sieve (Retsch, Haan, Germany). Then
0 ark
w d
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t bance
a l
mn oven temperature is 30◦C and the detection waveleng
80 nm. The injection volumes, flow rates and sampling r
re 15�l, 2 ml/min and 200 ms and 10�l, 5 ml/min and
00 ms for the methods with analysis times of 11 and 2
espectively.

A UV-2101 PC spectrophotometer (Shimadzu, Tok
apan) at detection wavelength 729 nm is used for th
ermination of the antioxidant capacity with the TEAC as
he cuvet path length is 1 cm.

.1.2. Chemicals and reagents
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-c

oxylic acid 97%), ABTS•+ = 2,2′-azino-bis-(3-ethylben
othiazoline-6-sulfonic acid), potassium persulfate
−)-epigallocatechin gallate (EGCG) were purchased
igma-Aldrich (Steinheim, Germany). Caffeine is obtai

rom Fluka (Buchs, Switzerland) and ethanol (LiChros
uality) from Merck (Darmstadt, Germany). A 1.2 mg
affeine and 0.2 mg/ml EGCG standard in Milli-Q wate
repared for peak identification purposes.

.1.3. Mobile phases
The green tea extracts were separated using two gra

lution methods containing acetonitrile (ACN) (Hipersolv
PLC quality, BDH Laboratory Supplies, Poole, Engla
nd Milli-Q water (Milli-Q water purification system, Mi

ipore, Molsheim, France) both with 0.05% trifluoroace
cid (Sigma–Aldrich). In the fast method, the ACN chan

rom 5% to 26% within 0.7 min and then remains cons
t 26%. In the long method the percentage ACN varies
.5 g of the sieved tea is infused during 7 min in the d
ith initially boiling Milli-Q water. The infusion occurre
t room temperature in a 100.0 ml volumetric flask with
ixing. The warm extracts were successively filtered thro
90�m DIN 4188 sieve (Retsch) and a 0.2�m membran

lter (Pall Gelman Laboratory, Karlstein/Main, German
he green tea extracts were stored in dark glass recip
t 9◦C before injection on the column, which was the
fter preparation. Each extract was chromatographed i
licate for both gradient elution methods. The same day
xtracts were also analyzed with the TEAC assay, after
ion (1/200) with Milli-Q water. The obtained TEAC val
s multiplied by two to obtain a TEAC value equivalent t
% (m/v) green tea extract.

An aqueous solution containing 7.00 mM ABTS a
.45 mM K2S2O8 is prepared and stored in the dark d

ng at least 12 h to produce the ABTS•+ radical. The solutio
s no longer used than three days after preparation. B
se, the solution is diluted about 1/40 with Milli-Q wa

o obtain a solution with absorbance between 1.5 and 1
29 nm.

A 5.00 mM Trolox solution in ethanol is prepared a
tored at−7◦C. Daily a Trolox calibration line (35, 40, 4
0 and 55�M) in Milli-Q water is made.

.3. TEAC assay

The antioxidant capacity of Trolox and of the green tea
racts is determined by measuring the decrease in absor
t 729 nm (experimentalλmax), 60 s after addition of 0.3 m
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Trolox standard (or the 1/200 diluted green tea extract) to
1.0 ml diluted ABTS•+ solution with an absorbance between
1.5 and 1.7. The solvents in the cuvet are mixed by withdraw-
ing and replacing 10 times a 300�l volume of the solutions
using a micropipet. The measurements are done in quadru-
plicate for each Trolox standard and green tea extract and
the average decrease in absorbance is computed (�A). The
calibration curve (�A versus Trolox concentration) is then
used to compute the equivalent Trolox concentration for each
diluted green tea extract. This value is multiplied with 333
(300�l from the 100 ml tea extract is analyzed) and with
the dilution factor (200), and corrected for the amount tea
weighted (in case different from 0.5000 g) and multiplied by
2 to obtain the TEAC value as for 1.0 g of green tea leaves.

Since caffeine is a major component of green tea, the�A

for a 4 mg/ml aqueous caffeine solution was measured and
compared to the�A for Milli-Q water. It was found that both
�A do not differ significantly from each other and thus it can
be concluded that caffeine does not contribute to the TEAC
value obtained for green tea extracts.

3.4. Precision of the TEAC assay

The precision of the reference method is determined for
three teas with low (2999 mM), intermediate (3779 mM) and
h ard
d ate
m ctivel
9 oled
S tea
w kets
a lues
( val,
s

4. Results and discussion

Prior to modeling, the 110 green tea extract chro-
matograms, obtained for each chromatographic method, are
warped to correct the peak shifts. A proper alignment of chro-
matograms enables their use for multivariate regression pur-
poses. The multivariate model aims relating chromatographic
variables and the TEAC values. By use of robust principal
component analysis and histograms it is possible to detect
leverages inX and outliers iny, respectively. After the chro-
matograms alignment and outlier elimination, the mean of
the replicates is computed and the data is divided into a cali-
bration and test set. Finally, PLS and UVE-PLS methods are
used to construct multivariate regression models.

4.1. Alignment of the chromatograms

Prior to the alignment of chromatograms, it is checked
whether a baseline correction is necessary and uninforma-
tive baseline (200 sampling points) preceding the dead time
is removed, resulting in signals of 3100 and 1000 points,
for the long and short chromatograms, respectively. In both
chromatographic profiles peak shifts occurred what is illus-
trated inFigs. 2a and 3a. In the long chromatograms the shifts
vary between−8 and 47 data points (Fig. 2a), while in the
s s
( d a
p hro-
m for the
a ent
w ers,
N nce
s gram
i one
f hort

F r (b) wa d
p t in one
igh (4058 mM) TEAC values, respectively. The stand
eviation (SD) of the TEAC values, obtained for six replic
easurements of these three teas was found to be respe
3 (5.62%), 104 (6.29%) and 204 (12.33%) mM. The po
D[10] is 143 (8.65%) and is strongly influenced by the
ith high TEAC value. The percentages between brac
re computed with 100% being the range of TEAC va
values between 2792 and 4446 mM after outlier remo
ee Section4.2).

ig. 2. One hundred and ten long chromatograms before (a) and afte
eak 3 an unidentified substance, only in high concentrations presen
y

hort chromatograms the shifts vary from−11 up to 26 point
Fig. 3a). The negative sign refers to a forward shift, an
ositive sign refers to a backward shift, compared to c
atogram one, selected as the most representative one
lignment of the remaining chromatograms. The alignm
ith COW requires the optimization of two input paramet
andt. The optimization is done as follows. First a refere

ignal is selected. It must be a representative chromato
n which all peaks are clearly present. Chromatogram
ulfills these requirements for both data sets (long and s

rping (N = 60, t = 3) with peak 1 caffeine, peak 2 (−)-epigallocatechin gallate an
tea extract.
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Fig. 3. One hundred and ten short chromatograms before (a) and after (b) warping (N = 30, t = 3) with peak 1 containing caffeine, peak 2 containing (−)-
epigallocatechin gallate and peak 3 an unidentified substance, only in high concentrations present in one tea extract.

chromatograms) and is therefore chosen as reference. Then,
chromatogram 17 is selected as the first chromatogram to
align because it has most likely the largest peak shifts with
respect to the reference.N andt are optimized by varyingN
from 10 to 70 andt from 1 to 6. WithN = 60,t = 3 andN = 30,
t = 3 the long and short chromatogram 17, respectively, were
aligned. These parameters are then used to align the whole
data set. If still some signals remain unaligned,N andt can
be further optimized for the unaligned signals. However, it
was not necessary in our case. The aligned signals are shown
in Figs. 2b and 3b. The alignment of the 110 long and short
chromatograms took 24 and 6 min, respectively.

4.2. Leverage objects and outliers

Before constructing a calibration model, the presence of
leverages and outlying observations in the space of chro-
matograms,X, and TEAC values,y, is examined using ro-
bust PCA and histograms, respectively. InFigs. 1 and 4, plots
of the orthogonalversus robust distances are shown for the
long and short chromatograms for five and six robust princi-
pal components, respectively. The number of robust principal
components was derived from so-called scree plots[14]. The
cut-off values for the robust and orthogonal distances are in-
dicated in theFigs. 1 and 4by vertical and horizontal lines,
r four
q rages
t drant
a hog-
o nd
6 s or-
t f one
t lains
w e an
e min,
i ch is

at least five times higher than in all other chromatograms (see
Figs. 2b and 3b). Besides this peak, they do not differ from
the average chromatogram. Only one such tea extract was
present in the data set and therefore this sample is considered
‘atypical’. It would be interesting to construct a model, able
to predict also atypical samples but building a model with
only one such sample in the calibration set might damage
the model with a consequence for future sample predictions.
Moreover, having only one such sample prevents the evalua-
tion of the prediction of new atypical samples and therefore,
this tea sample is removed. In a situation where there are more
atypical samples, they would not be called atypical anymore
and we would keep them and divide them over the calibration
and test set prior to modeling.

In Figs. 1 and 4, it is seen that chromatograms 17, 18,
29, 44 and 47 are situated in the first or second quadrant

F he or-
t es are
d

espectively. These cut-off lines divide the space into
uadrants. The objects in the first quadrant are bad leve

hose in the second are good leverages, in the third qua
re ordinary objects, and in the fourth quadrant are ort
nal outliers. InFigs. 1 and 4, both chromatograms 61 a
2 (located in the fourth quadrant) can be considered a

hogonal outliers. They are replicate chromatograms o
ea sample. A closer look at these chromatograms exp
hy they are identified as orthogonal outliers. Both hav
xceptional high peak (labeled as peak 3) at 6 and 1.25

n the long and short chromatograms, respectively, whi
,

ig. 4. The score diagnostic plot of the 110 short chromatograms. T
hogonal distance is plotted vs. the robust distance. The cut-off valu
etermined in the space of six rPC’s.
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Fig. 5. Histogram of the 55 TEAC values.

and are either bad or good leverages. The distance of these
objects from the majority of objects is not high compared to
chromatograms 61 and 62. Therefore, the latter objects were
kept in both data sets.

A histogram of the TEAC values of the 55 Chinese green
tea extracts is shown inFig. 5. It reveals that two tea ex-
tracts have extreme TEAC values, probably due to experi-
mental errors. Since the experimental conditions did not al-
low to remake and remeasure the two samples, these two
samples were removed. In total, three tea samples are re-
moved from the data set. One tea sample is a leverage object
in X, and two tea samples have atypical TEAC values. Af-
ter removing outliers, the data sets contain 52 chromatograms
obtained by averaging the replicates of the warped chromato-
grams.

4.3. Subset selection

The data sets with short and long chromatograms and their
corresponding TEAC values are divided into a calibration
set, to build to model, and a test set to validate the model. A
calibration set was selected by uniform sampling of sorted,
from low to high, TEAC values. The calibration set contains

Fig. 6. Regression coefficients of the PLS model obtained for the long chro-
matograms.

forty samples, and the remaining 12 objects are used as an
external test set.

4.4. PLS and UVE-PLS models

The PLS model built for the long chromatograms contains
eight PLS factors (seeTable 1a). For this model a RMSECV
value comparable to the precision of the reference method
is obtained. The RMS, RMSECV and RMSEP of this model
are respectively 81, 159 and 174 mM, what corresponds to
about 5%, 10% and 11% of the total range of the TEAC
values, respectively. By way of illustration, the regression
coefficients of the model are shown inFig. 6.

Using the UVE-PLS approach it is possible to remove the
uninformative chromatographic variables, which have a high
variance but a small covariance with the response values.
Usually, the UVE-PLS approach yields less complex models
in terms of number of latent variables compared to classical
PLS, and also, offers an improvement of prediction abilities
of the model. In our application, by means of the UVE-PLS,
the complexity of the initial PLS model is reduced to seven
factors, and the number of considered variables from 3100
to 142 only. InFig. 7, the retained variables of the UVE-

Table 1
Models constructed for (a) the long, and (b) the short chromatograms and (c) the long chromatograms of which the number of sampling points is reduced by
a

M

(
) )
) )

(
%) )
)

(
)
) )

F ean sq f predict
veraging

odel Fn RMS

a) Models constructed for the long chromatograms
PLS 8 80.53 (4.87%
UVE-PLS 7 156.57 (9.47%

b) Models constructed for the short chromatograms
PLS 3 177.03 (10.70
UVE-PLS 3 148.14 (8.96%

c) Models constructed for the reduced chromatograms
PLS 7 106.31 (6.43%
UVE-PLS 6 118.96 (7.19%

n: model complexity, RMS: root mean squared error, RMSECV: root m
RMSECV RMSEP

159.20 (9.63%) 173.76 (10.51%
114.28 (6.91%) 171.13 (10.35%

205.97 (12.45%) 176.74 (10.69%
165.34 (10.00%) 112.00 (6.77%)

162.56 (9.83%) 123.59 (7.47%)
147.83 (8.94%) 171.14 (10.35%

uared error of cross-validation and RMSEP: root mean squared error oion.
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Fig. 7. Plot of the reference chromatogram for the alignment of the long
chromatograms. Only the dark variables are retained in the UVE-PLS model.
Peak 1 represents caffeine, peak 2 (−)-epigallocatechin gallate and peak 3 is
an unidentified substance, which is only clearly present in chromatograms
61 and 62.

PLS model are indicated as dark spots on the reference chro-
matogram used for the alignment. From this Figure, it can be
seen that the retained variables are selected from the peaks
with retention times 3.0, 5.7, 6.4, 7.3, 8 and 9.1 min. Among
the uninformative variables there are baseline variables but
also variables from the caffeine peak and other peaks for
which we did not have standards to identify them. It is not
unexpected that variables from the large caffeine peak (peak
1 inFigs. 2b and 7) are not used in the UVE-PLS model since
in Section3.3 it was shown that caffeine has no antioxidant
capacity. The removal of baseline variables is obvious. The
UVE-PLS model seems to be more stable in terms of more
constant RMS values (Table 1a) and thus is to be preferred.

Fig. 9. Regression coefficients of the PLS model obtained for the short chro-
matograms.

The RMS, RMSECV and RMSEP of this model are respec-
tively 157, 114 and 171 mM, what corresponds to about 9%,
7% and 10% of the total range of the TEAC values, respec-
tively. Taking into account the range of TEAC values and the
precision of the TEAC method, which is found to be 143 mM
(pooled SD), these results can be considered satisfactory. The
PLS and UVE-PLS models are shown inFig. 8a and b, re-
spectively. Calibration samples are indicated as (о) and test
samples as (*). It is seen that the PLS model allows a slightly
better prediction of calibration samples, but the prediction of
test samples is comparable with the UVE-PLS model.

The results of modeling performed on the short chro-
matograms are shown inTable 1b, the PLS regression coeffi-
cients are shown inFig. 9. Both models, PLS and UVE-PLS,
have only three components. The UVE-PLS model, is based
on 119 of the 1000 original variables and results in better

F rped lo ctors)
w s retain©
ig. 8. Results of (a) the PLS model (eight factors) built with the 40 wa
ith the 40 warped long calibration chromatograms with 142 variable
ng calibration chromatograms, and (b) the UVE-PLS model (seven fabuilt
ed (: calibration samples, *: test samples).
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predictions. The 119 retained variables are selected from the
peak apexes at retention time 0.58 and 1.62 min and at reten-
tion times 0.95, 1.1, 1.3 and 1.42 min (Fig. 3b). Although the
RMSECV and RMSEP of the PLS model are slightly higher,
i.e., 206 mM (12%) and 177 mM (11%), it can be concluded
that this model results in acceptable and stable predictions
of the TEAC values (RMSEP = 11%). Generally, it is seen
that with the short chromatograms a less complex model is
obtained with a slightly higher cross-validation error than
with the long chromatograms. Moreover, it can be concluded
that a baseline separation of the green tea extract compounds
is not required in order to obtain an acceptable calibration
model between the chromatographic and TEAC method. A
considerable gain of time can thus be achieved by using the
fast chromatographic method on monolithic silica columns
and the above calibration models for the prediction of the
antioxidant capacity.

4.5. PLS models built with reduced chromatograms

The alignment of the long chromatograms took 13 s each
signal, resulting in a total warping time of about 24 min.
Considering the HPLC analysis time of one chromatogram
(11 min), this computation time is acceptable but there might
be cases where COW will require much higher computation
times and then it can not be used for on-line applications any-
m n of
t pling
p with
s hro-
m ints)
a fined
i n,
a nal
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a bra-
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s 42
v ined
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f uced
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f plex
t e
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e thus
b rams
c

ains
r was
i ance
p ,
t ow-
e n. A

thorough comparison of the performance of these methods is
being performed at the moment and will be reported later.

4.6. TEAC prediction of new tea samples

In a production application one is interested in a quick pre-
diction of the antioxidant capacity of new tea samples. New
samples will be treated as follows. After removal of the first
200 un-informative sampling points (dead time), the chro-
matograms of new samples will be aligned using the same
reference signal and COW input parameters as for the align-
ment of the initial data set. As long as peak shifts in new
chromatograms do not increase compared to chromatogram
17, one can conclude that column ageing is minimal and thus
most likely the sameN andt value can be used for the align-
ment of new samples. If not, one needs to re-optimize these
input parameters for the new samples.

Then, the new chromatograms will be screened for lever-
age objects by robust PCA after adding them to the matrix of
the 110 initial chromatograms. The objects falling in quad-
rants two and three are retained, while objects in quadrants
one and four need further inspection before removing them.
If their orthogonal distance is significantly higher than for
the original objects, they must be removed and cannot be
predicted with the above models. However, when among the
new samples, there are many samples with high orthogonal
d initial
d del
i to al-
l ll. In
t more.

5

e to
p (ex-
p with
a ilica
c gned
w iate
c ith
P s of
t ny
u ted
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s

A

tific
R

ore. Therefore, it was investigated whether a reductio
he chromatogram length, by averaging successive sam
oints, results in a decreased warping time and in models
till acceptable prediction errors. The length of the long c
atograms was reduced six times (to 516 sampling po
nd the chromatograms were warped using the earlier de

nput parameters (N = 60, t = 3). The alignment took 19 mi
reduction of only 5 min. However, by reducing the sig

ength, smallerN values could be used. WithN = 30 andt = 3,
he computation time could be reduced to only 6 min. T

PLS and UVE-PLS model is built using the same cali
ion and test sets as above. The models contain seve
ix factors, respectively, and in the UVE-PLS model, only
ariables are retained from the 516. The plot with reta
hromatographic variables is very similar toFig. 7and there
ore not shown. The same peak parts as for the unred
ignals are found to be important for modeling. The R
MSECV and RMSEP are shown inTable 1c. The model

or the reduced chromatograms are somewhat less com
han for the original ones (Table 1a and c). Moreover, th
rediction error of the PLS and UVE-PLS models is at l
qually good than for the original chromatograms. It can
e concluded that models built with reduced chromatog
an be used for the TEAC prediction as well.

Nevertheless, the computation time with COW rem
ather long, even after data point reduction. Therefore it
nvestigated whether faster aligning methods, as for inst
arametric time warping[18,19], could be used. With PTW

he chromatograms could be aligned within only 18 s. H
ver, small differences in the warping quality were see
istance, as seen for chromatograms 61 and 62 of the
ata (Figs. 1 and 4), one might consider to build a PLS mo

ncluding these samples in the calibration and test sets
ow a precise TEAC prediction of these samples as we
hat case, such samples are not considered atypical any

. Conclusions

In this paper a stable and reliable model is built, abl
redict the antioxidant capacity of green tea extracts
ressed as the TEAC value) from fast chromatograms
nalysis times of 11 and 2 min obtained on monolithic s
olumns. The chromatograms were successfully ali
ith correlation optimized warping and used for multivar
alibration as if they were spectra. The models built w
LS and UVE-PLS resulted in acceptable prediction

he antioxidant capacity. However, with UVE-PLS, ma
ninformative chromatographic variables were elimina
nd less complex models were obtained. It was found

he antioxidant capacity can also be predicted from
on-completely resolved chromatograms, or chromatog
ith highly reduced sampling points, resulting in mu
horter analysis times.
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