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Abstract

Inthis paper, afast strategy for determining the total antioxidant capacity of Chinese green tea extracts is developed. This strategy includes the
use of experimental techniques, such as fast high-performance liquid chromatography (HPLC) on monolithic columns and a spectrophotometric
approach to determine the total antioxidant capacity of the extracts. To extract the chemically relevant information from the obtained data,
chemometrical approaches are used. Among them there are correlation optimized warping (COW) to align the chromatograms, robust principal
component analysis (robust PCA) to detect outliers, and partial least squares (PLS) and uninformative variable elimination partial least squares
(UVE-PLS) to construct a reliable multivariate regression model to predict the total antioxidant capacity from the fast chromatograms.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction analysis of each extract compound individually, fingerprint
technology was introduced for quality control. Fingerprint
The dry leaves of the green tea platimellia sinensis chromatograms are developed and compared to that of a stan-

(L.) are known to contain flavanols with antioxidant capacity dardized extract to achieve authentication, identification and
such as catechin)-epicatechin,{)-epicatechin-3-gallate,  quality control of the herlp4,5]. Combining the information
(—)-epigallocatechin and —)-epigallocatechin-3-gallate  from the green tea fingerprint and the TEAC assay allows a
[1,2]. The consumption of green tea is therefore associatedgood determination of the quality of the tea extract. An appli-
with protective effects against coronary heart diseases andcation can be found in the paper by Koleva ef@, where a
cancers of the lung, forestomach, esophagus, duodenumpost-column TEAC assay is presented to measure the antiox-
pancreas, liver, breast, colon, and skin, induced by chemicalidant capacity of HPLC separated analytes of 0.a. Rosemary
carcinogendl]. The total antioxidant capacity of a green extracts. However, for high-throughput applications simple
tea extract is an important quality criterion and can be de- and fast methods are preferred and in this paper, it is
termined with a decolorization assay, the Trolox equivalent therefore investigated whether the total antioxidant capacity
antioxidant capacity (TEAC) method, in which the antiox- of green tea extracts can simply be predicted from their fast
idant capacity is expressed as the concentration of a Troloxchromatograms, developed on monolithic silica columns. It
solution with equal antioxidant capacif]. Besides the  was earlier shown that fast, robust and repeatable separations
flavanols, the green tea may contain many other componentscan be obtained at high flow rates (up to 9 ml/min) on these
also contributing to the safety and quality of the extract. columns, allowing to speed up the analysis compared to
To avoid a time-consuming qualitative and quantitative conventional particle-packed HPLC coluniii$.
A multivariate calibration model relating the chromato-
* Corresponding author. Tel.: +32 2 477 47 34; fax: +32 24774735, 9raphic data with the TEAC data is built. A similar study
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden). but based on NIR spectra, instead of chromatograms,
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is presented by Luypaert et a[8]. However, chro- dynamic time warpingl7], parametric time warping (PTW)
matograms have the advantage that qualitative and quanti{18,19], peak alignment by a genetic algorithm (PAGA)]
tative information of given compounds can be retrieved, if and fuzzy warpind21]. In our application correlation op-
needed. timized warping, COW, is usefd1-13] COW is a method

In this paper, the total antioxidant capacity of 55 Chinese which does not require peak detection. It aligns two signals
green tea extracts is determined using the TEAC assay. Si-(e.g., chromatograms) by means of piecewise linear stretch-
multaneously, these extracts were chromatographed with twoing and compression of the chromatogram to align in order
fast HPLC methods (analysis times of 11 and 2 min), result- to match it as good as possible with a target chromatogram.
ing in nearly baseline separated and only partially separatedAt the beginning of the procedure both signals, the profile to
peaks, respectively. The aim of our work is to verify the po- be aligned, P, and the target profile, T, are divided into a user-
tential use of fast chromatograms in the construction of mul- specified number of section, Each section in the profile P
tivariate models relating the chromatographic profiles with is warped, what means that its length is stretched or shortened
the antioxidant capacity of green tea. Multivariate calibration by shifting the position of its section end point by a limited
models such as PLS and UVE-PI[$510] were constructed  number of data points, defined by the slack paramet€he
for the short and long chromatograms. Due to instability of slack allows the section end points to shift freimto ¢ points.
the HPLC instrument as well as small mobile phase varia- For each section of P, the stretched or shortened sections are
tions, peak shifts were observed. Therefore, prior to model interpolated to the length of the corresponding section in T
building, the chromatograms were aligned using correlation and the correlation coefficients between them are computed.
optimized warping (COW]11-13] In order to detect the  The correlation coefficients allow to score a warping solution
presence of outliers in the data, robust principal component constructed as the cumulative sum of the correlation coeffi-
analysis (robust PCA)L4-16]is applied. cients obtained for the previous sections. For every possible

end point of a section (from ¢ to ¢) always the highest value
of the cumulative function is stored. After examining all pos-

2. Theory sible end points of all sections, a global warping solution is
constructed. It is found starting from the last section back-
2.1. TEAC assay wards, by determining the maximal value of the objective

function and its corresponding end point for every section.

In this study the Trolox equivalent antioxidant capac- A more detailed description of the COW algorithm can be
ity (TEAC) assay, described by Re et 48], is used found in refs[11-13]
with slight modifications (see Sectidd). The TEAC as-
say measures the capacity of a compound to scavengel.3. Leverage object and outlier detection
the blue—green ABTS cationic radical resulting in a color-
less producf3]. The acronym ABTS" denotes 2,2azino- In order to detect objects with extreme characteristics in
bis-(3-ethylbenzothiazoline-6-sulfonic acid). The amount of the space of chromatogran¥)(@nd outliers in TEAC values
ABTS** scavenged by the antioxidants in the green tea ex- (y), robust PCA and histograms are used, respectively. Ex-
tract is measured by the degree of decolorization, measuredreme objects have to be identified and removed since they
spectrophotometrically at 729 nm. In this study, the TEAC affect to a large extent the result of the data analysis. An im-
value reflects the scavenging capacity of 1% (m/v) green teaportant tool for visualizing data structure is principal compo-
extract expressed as the equivalent concentration (in mM) nent analysi$10], one of the most often applied dimension-
of Trolox, a water-soluble Vitamin E analogue. More details ality reduction methods. With PCA it is usually possible to

about the TEAC assay can be found in féf. project original data variables onto a set of a few new features,
so-called principal components, that are mutually orthogonal
2.2. Correlation optimized warping and are linear combinations of the original varialjley. The

PCs are constructed in order to maximize the description of

The correlation optimized warping, COW, aims to cor- the data variance, and thus, the first few PCs represent the
rect peak shifts along the time axis in chromatograms. majority of the data variance, whereas the remaining ones
There are a few reasons causing this phenomenon. Amongare related to random noise. Because the extracted PCs max-
them there are variations in mobile phase composition, col- imize the data variance, PCA is sensitive to the presence of
umn ageing and instrument instability. If peak shifts oc- outlying objects, and often the PCs reveal the presence of
cur, the chromatograms must be aligned to ensure a propemtypical objects. In order to identify objectively atypical ob-
chemometrical treatment of the data. This means that if the jects, one can apply robust PCA, obtained by substituting the
chromatograms are placed as rows of the data matrix, thevariance criterion by a so-called robust sqa-16] Robust
apexes of the corresponding peaks ought to be in the samd”CA is regarded as a model aiming to describe well the data
columns. majority. With this assumption outlier detection is possible

Several aligning (warping) techniques of analytical sig- based on the residuals from the robust PCA model. Taking
nals are described in the literature. Among them there areinto account the distance of an object from the data majority
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Fig. 1. The score diagnostic plot of the 110 long chromatograms. The or-

thogonal distance is plotted vs. the robust distance. The cut-off values are

determined in the space of five rPC’s.

(robust distance) and its distance from the robust PCA model
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calibration samples, artelp, 1) is the vector of PLS regres-
sion coefficients computed as:

b="Pq (@)

The optimal model complexity, i.e., the number of latent
factorsinthe PLS model, can be determined by the leave-one-
out cross-validation procedure (LOO-CV). During LOO-CV,
eachith object of the data set is left out once, and for the
remaining objects the PLS model is built. Then, the root
mean squared error of cross-validation (RMSECV) is com-
puted for PLS models with different numbers of latent factors
[22]:

Gev.i — i)

N
RMSECV(f) = ,| 3 N ) (5)
i=1

wherey; is the measured response of ttte sampleycy
is a predicted response from a calibration equation ob-
tained for the data without th&h sampleN is the num-

ber of calibration samples, arfddenotes number of latent

space (orthogonal distance) two cut-off values are proposedactors-

[14,15] as illustrated irFig. 1. Samples that exceed cut-off

values for both distances are bad leverage objects (quadranE0

I in Fig. 1) because they are far from the data majority and

also from the model's space. Objects that are only far from
the data majority but close to model’s space are good lever-
age objects (quadrant II), contrary to high-residual objects
that do not fit the robust model and exceed the cut-off value
for orthogonal distance (quadrant 1V). Schematically, three
types of leverage objects K-space are presentedhig. 1

A more detailed description of the robust PCA algorithm can

be found in refs[14-16]

2.4. Multivariate regression

2.4.1. Partial least squares (PLS)

In partial least squares regression, PLS, a dependent vari-

able,y, is modeled using latent variables, maximizing the co-
variance betweeK andy. The PLS model can be presented
as follows[22,23]

X=TP' +E (1)

)

whereX(n, p) represents the data matrix, vecydn, 1) is
a dependent variabld)(n, n) is the score matrixP' (n, p)
denotes the transposed loading matgés, 1) is a loading
vector,E(n, p) andf(n, 1) are the residuals.

In order to predicy; for a new chromatogramy(1, p), the
following equation can be used:

y=Tq+f

®3)

wherey; is the predicted dependent value for tiie new
sample,y denotes the mean of the dependent values for the

yi=y+xib

The optimal complexity of the PLS model corresponds
the number of latent factors resulting in the lowest RM-
SECV. Additionally, the PLS model can be validated with an
independent test set for which the root mean squared error of
prediction (RMSEP) is computed §2]:

RMSEP= (6)

In Eq. (6), N is the number of test set samplesand y!
are the predicted and measured response values for the test
set samplef23].

2.4.2. Uninformative variable elimination partial least

squares (UVE-PLS)

The uninformative variable elimination-partial least
squares approach, UVE-PLS, relies on the principle of the
PLS method and aims to remove uninformative variables,
i.e., the variables not more informative for modeling than
noise. The main steps of UVE-PLS can be summarized as
follows [9]:

(1) find the optimal complexity of the PLS model using the
cross-validation procedure;

(2) simulate a matri®R(n, r) with r artificial variables as
columns (where->300), with humbers drawn from a
normal distribution and multiplied by a small constant
10—10;

(3) augment the original da(n, p) with matrixR to form
XR(n, p+7r);

(4) construct: PLS models for the augmented data matrix
with leave-one-out cross-validation, and stereectors
of regression coefficientd, in a matrixB of a size f,

p+r);
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(5) for every regression coefficient, define its stability coef- 2% to 26% within 10 min and remains constant at 26%. The
ficient as the ratio of the column mean and the column analysis times are 2 and 11 min, respectively.
standard deviation ds;
(6) define a cut-off value to distinguish between informative 3.1.4. Column
and uninformative variables as the absolute value of the  The stationary phase consists of a Chromolith SpeedROD
maximal stability of the regression coefficients describ- (50 mmx 4.6 mm) and a Performance (100 nxw.6 mm)
ing artificial variables; column both RP-18e from Merck which are coupled in line
(7) remove from the original data matXall the variables ~ with a column coupler (Merck). A Chromolith guard col-
for which the absolute value of the stability coefficientis umn RP-18e (5 mmx 4.6 mm, Merck) was placed before the
below the cut-off value; analytical ones.
(8) construct a final PLS model for the data containing in-
formative variables only. 3.1.5. Software
All data processing methods (COW, robust PCA, PLS
and UVE-PLS) are done with subroutines developed un-
der MatladM 5.3 software (The MathWorks Inc., Natick,
MA). Computations were performed on a computer with a
1000 mHz Athlon processor and 256 MB RAM.

3. Experimental
3.1. Instruments, chemicals and mobile phases

3.1.1. Instruments 3.2. Preparation of the green tea extracts, ABTS®** and

The high-performance liquid chromatography (HPLC) Trolox solutions
system consists of a L-7100 pump, L-7612 solvent degasser,
L-7250 autosampler, L-7360 oven, L-7400 UV detector and  The 55 Chinese green teas were purchased in several Chi-
a D-7000 interface from Merck-Hitachi (Tokyo, Japan). The nese stores. The extracts were prepared as follows: 2.0g
volume and path length of the UV detector arepl@and of dry green tea leaves are milled duringc30s with a
1 cm respectively. This system is operated with the LaChrom Moulinette 320 mixer (Moulinex, France) and sieved trough
D-7000 HPLC Manager Software (Merck-Hitachi). The col- a 500um DIN 4188 sieve (Retsch, Haan, Germany). Then
umn oven temperature is 3C€ and the detection wavelength 0.5g of the sieved tea is infused during 7 min in the dark

280 nm. The injection volumes, flow rates and sampling rates with initially boiling Milli-Q water. The infusion occurred

are 15ul, 2ml/min and 200ms and 40, 5ml/min and

100 ms for the methods with analysis times of 11 and 2 min,

respectively.
A UV-2101 PC spectrophotometer (Shimadzu, Tokyo,

at room temperature in a 100.0 ml volumetric flask without
mixing. The warm extracts were successively filtered through
a 90pum DIN 4188 sieve (Retsch) and a uth membrane
filter (Pall Gelman Laboratory, Karlstein/Main, Germany).

Japan) at detection wavelength 729 nm is used for the de-The green tea extracts were stored in dark glass recipients

termination of the antioxidant capacity with the TEAC assay.
The cuvet path length is 1 cm.

3.1.2. Chemicals and reagents
Trolox  (6-hydroxy-2,5,7,8-tetramethylchroman-2-car-
boxylic acid 97%), ABTS" =2,2-azino-bis-(3-ethylben-

at 9°C before injection on the column, which was the day
after preparation. Each extract was chromatographed in du-
plicate for both gradient elution methods. The same day, the
extracts were also analyzed with the TEAC assay, after dilu-
tion (1/200) with Milli-Q water. The obtained TEAC value

is multiplied by two to obtain a TEAC value equivalent to a

zothiazoline-6-sulfonic acid), potassium persulfate and 1% (m/v) green tea extract.

(—)-epigallocatechin gallate (EGCG) were purchased from

Sigma-Aldrich (Steinheim, Germany). Caffeine is obtained
from Fluka (Buchs, Switzerland) and ethanol (LiChrosolv
quality) from Merck (Darmstadt, Germany). A 1.2 mg/ml

caffeine and 0.2 mg/ml EGCG standard in Milli-Q water is
prepared for peak identification purposes.

3.1.3. Mobile phases

An aqueous solution containing 7.00mM ABTS and
2.45mM KxS;0g3 is prepared and stored in the dark dur-
ing at least 12 h to produce the ABTSadical. The solution
is no longer used than three days after preparation. Before
use, the solution is diluted about 1/40 with Milli-Q water
to obtain a solution with absorbance between 1.5 and 1.7 at
729 nm.

A 5.00mM Trolox solution in ethanol is prepared and

The green tea extracts were separated using two gradienstored at-7°C. Daily a Trolox calibration line (35, 40, 45,

elution methods containing acetonitrile (ACN) (Hipersolv for
HPLC quality, BDH Laboratory Supplies, Poole, England)
and Milli-Q water (Milli-Q water purification system, Mil-

lipore, Molsheim, France) both with 0.05% trifluoroacetic

acid (Sigma—Aldrich). In the fast method, the ACN changes

50 and 55.M) in Milli-Q water is made.

3.3. TEAC assay

The antioxidant capacity of Trolox and of the green tea ex-

from 5% to 26% within 0.7 min and then remains constant tracts is determined by measuring the decrease in absorbance
at 26%. In the long method the percentage ACN varies from at 729 nm (experimentalyay), 60 s after addition of 0.3 ml
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Trolox standard (or the 1/200 diluted green tea extract) to 4. Results and discussion
1.0 ml diluted ABTS™* solution with an absorbance between
1.5and 1.7. The solvents in the cuvet are mixed by withdraw-  Prior to modeling, the 110 green tea extract chro-
ing and replacing 10 times a 3p0volume of the solutions  matograms, obtained for each chromatographic method, are
using a micropipet. The measurements are done in quadru-warped to correct the peak shifts. A proper alignment of chro-
plicate for each Trolox standard and green tea extract andmatograms enables their use for multivariate regression pur-
the average decrease in absorbance is compdg. (The poses. The multivariate model aims relating chromatographic
calibration curve A A versus Trolox concentration) is then variables and the TEAC values. By use of robust principal
used to compute the equivalent Trolox concentration for eachcomponent analysis and histograms it is possible to detect
diluted green tea extract. This value is multiplied with 333 leverages iX and outliers iry, respectively. After the chro-
(300! from the 100 ml tea extract is analyzed) and with matograms alignment and outlier elimination, the mean of
the dilution factor (200), and corrected for the amount tea the replicates is computed and the data is divided into a cali-
weighted (in case different from 0.5000 g) and multiplied by bration and test set. Finally, PLS and UVE-PLS methods are
2 to obtain the TEAC value as for 1.0 g of green tea leaves. used to construct multivariate regression models.
Since caffeine is a major component of green tea/the
for a 4mg/ml aqueous caffeine solution was measured andy ;. Ajignment of the chromatograms
compared to the\ A for Milli-Q water. It was found that both
AA do not differ significantly from each other and thus it can Prior to the alignment of chromatograms, it is checked
be concluded that caffeine does not contribute to the TEAC whether a baseline correction is necessary and uninforma-
value obtained for green tea extracts. tive baseline (200 sampling points) preceding the dead time
is removed, resulting in signals of 3100 and 1000 points,
for the long and short chromatograms, respectively. In both
3.4. Precision of the TEAC assay chromatographic profiles peak shifts occurred what is illus-
trated inFigs. 2a and 3dn the long chromatograms the shifts
The precision of the reference method is determined for yary between-8 and 47 data pointd={g. 2a), while in the
three teas with low (2999 mM), intermediate (3779 mM) and short chromatograms the shifts vary frer 1 up to 26 points
high (4058 mM) TEAC values, respectively. The standard (Fig. 3a). The negative sign refers to a forward shift, and a
deviation (SD) of the TEAC Values, obtained for six replicate positive Sign refers to a backward Shiﬁ, Compared to chro-
measurements of these three teas was found to be respectivelyhatogram one, selected as the most representative one for the
93 (5.62%), 104 (6.29%) and 204 (12.33%) mM. The pooled alignment of the remaining chromatograms. The alignment
SD[10] is 143 (8.65%) and is strongly influenced by the tea with COW requires the optimization of two input parameters,
with high TEAC value. The percentages between brackets y andr. The optimization is done as follows. First a reference
are computed with 100% being the range of TEAC values sjgnal is selected. It must be a representative chromatogram
(ValueS between 2792 and 4446 mM after outlier removal, in which all peaks are C|ear|y present_ Chromatogram one

see Sectiod.2). fulfills these requirements for both data sets (long and short
1100 I ; : . i ; : : T 1100 - : T r 1 T
1000F 1000} ;
900 900 2
800 800 |
700 - 700 - ¢
< 600+ S 600
E E
< 500F < 5007
400 - 400 +
300 300 -
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100 100 k _.d
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1T 2 3 4 5 6 7 8 9 10 11 i 2 3 4 5 6 7 8 8 10 1
(a) Time (minutes) (b) Time (minutes)

Fig. 2. One hundred and ten long chromatograms before (a) and after (b) wavgi(r = 3) with peak 1 caffeine, peak 2-§-epigallocatechin gallate and
peak 3 an unidentified substance, only in high concentrations present in one tea extract.
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Fig. 3. One hundred and ten short chromatograms before (a) and after (b) waypird®,(r=3) with peak 1 containing caffeine, peak 2 containirg-(
epigallocatechin gallate and peak 3 an unidentified substance, only in high concentrations present in one tea extract.

chromatograms) and is therefore chosen as reference. Therat least five times higher than in all other chromatograms (see
chromatogram 17 is selected as the first chromatogram toFigs. 2b and 3p Besides this peak, they do not differ from
align because it has most likely the largest peak shifts with the average chromatogram. Only one such tea extract was
respect to the referencl.andt are optimized by varyingy presentin the data set and therefore this sample is considered
from 10 to 70 and from 1 to 6. WithN =60,7=3 andN =30, ‘atypical’. It would be interesting to construct a model, able
t=3the long and short chromatogram 17, respectively, were to predict also atypical samples but building a model with
aligned. These parameters are then used to align the wholeonly one such sample in the calibration set might damage
data set. If still some signals remain unalign&cand: can the model with a consequence for future sample predictions.
be further optimized for the unaligned signals. However, it Moreover, having only one such sample prevents the evalua-
was not necessary in our case. The aligned signals are showtion of the prediction of new atypical samples and therefore,
in Figs. 2b and 3bThe alignment of the 110 long and short thistea sample isremoved. In a situation where there are more
chromatograms took 24 and 6 min, respectively. atypical samples, they would not be called atypical anymore
and we would keep them and divide them over the calibration
and test set prior to modeling.

In Figs. 1 and 4it is seen that chromatograms 17, 18,
29, 44 and 47 are situated in the first or second quadrant

4.2. Leverage objects and outliers

Before constructing a calibration model, the presence of
leverages and outlying observations in the space of chro-
matogramsX, and TEAC valuesy, is examined using ro-
bust PCA and histograms, respectivelyFigs. 1 and 4plots
of the orthogonabersus robust distances are shown for the
long and short chromatograms for five and six robust princi-
pal components, respectively. The number of robust principal
components was derived from so-called scree plats The
cut-off values for the robust and orthogonal distances are in-
dicated in the=igs. 1 and 4y vertical and horizontal lines,

62

14001 V 7 o6l I

12001 1

—_
o
(=]
o
T
L

2]

o

o
T
i

D

o

o
T

L) o

respectively. These cut-off lines divide the space into four
quadrants. The objects in the first quadrant are bad leverages
those in the second are good leverages, in the third quadrant
are ordinary objects, and in the fourth quadrant are orthog-
onal outliers. InFigs. 1 and 4both chromatograms 61 and
62 (located in the fourth quadrant) can be considered as or-
thogonal outliers. They are replicate chromatograms of one
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tea sample. A closer look at these chromatograms explains REpUStditAnGS

why they are identified as orthogonal outliers. Both have an Fig. 4. The score diagnostic plot of the 110 short chromatograms. The or-

gxceptional high peak (labeled as peak 3) at 6. and 1-2_5 mi.nathogonal distance is plotted vs. the robust distance. The cut-off values are
in the long and short chromatograms, respectively, which is determined in the space of six rPC's.
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Fig. 6. Regression coefficients of the PLS model obtained for the long chro-
matograms.

Fig. 5. Histogram of the 55 TEAC values.
and are either bad or good leverages. The distance of theséorty samples, and the remaining 12 objects are used as an
objects from the majority of objects is not high compared to external test set.
chromatograms 61 and 62. Therefore, the latter objects were
kept in both data sets. 4.4. PLS and UVE-PLS models

A histogram of the TEAC values of the 55 Chinese green
tea extracts is shown ikig. 5 It reveals that two tea ex- The PLS model built for the long chromatograms contains
tracts have extreme TEAC values, probably due to experi- eight PLS factors (seBable J). For this model a RMSECV
mental errors. Since the experimental conditions did not al- value comparable to the precision of the reference method
low to remake and remeasure the two samples, these twois obtained. The RMS, RMSECV and RMSEP of this model
samples were removed. In total, three tea samples are reqre respectively 81, 159 and 174 mM, what corresponds to
moved from the data set. One tea sample is a leverage objechbout 5%, 10% and 11% of the total range of the TEAC
in X, and two tea samples have atypical TEAC values. Af- values, respectively. By way of illustration, the regression
ter removing outliers, the data sets contain 52 chromatogramscoefficients of the model are shownfig. 6.
obtained by averaging the replicates of the warped chromato-  Using the UVE-PLS approach it is possible to remove the
grams. uninformative chromatographic variables, which have a high
variance but a small covariance with the response values.
Usually, the UVE-PLS approach yields less complex models
in terms of number of latent variables compared to classical

The data sets with short and long chromatograms and theirPLS, and also, offers an improvement of prediction abilities
corresponding TEAC values are divided into a calibration of the model. In our application, by means of the UVE-PLS,
set, to build to model, and a test set to validate the model. A the complexity of the initial PLS model is reduced to seven
calibration set was selected by uniform sampling of sorted, factors, and the number of considered variables from 3100
from low to high, TEAC values. The calibration set contains to 142 only. InFig. 7, the retained variables of the UVE-

4.3. Subset selection

Table 1
Models constructed for (a) the long, and (b) the short chromatograms and (c) the long chromatograms of which the number of sampling points is reduced by
averaging

Model Fn RMS RMSECV RMSEP
(a) Models constructed for the long chromatograms
PLS 8 8053 (4.87%) 1520 (9.63%) 1736 (10.51%)

UVE-PLS 7 15657 (9.47%)
(b) Models constructed for the short chromatograms

PLS 3 17703 (10.70%)

UVE-PLS 3 14814 (8.96%)
(c) Models constructed for the reduced chromatograms

PLS 7 10631 (6.43%)

UVE-PLS 6 11896 (7.19%)

1148 (6.91%)

2097 (12.45%)
16534 (10.00%)

1656 (9.83%)
14B3 (8.94%)

17113 (10.35%)

17674 (10.69%)
1120 (6.77%)

12%9 (7.47%)
17114 (10.35%)

Fn: model complexity, RMS: root mean squared error, RMSECV: root mean squared error of cross-validation and RMSEP: root mean squared erian.of predict
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Fig. 9. Regression coefficients of the PLS model obtained for the short chro-

Fig. 7. Plot of the reference chromatogram for the alignment of the long
matograms.

chromatograms. Only the dark variables are retained in the UVE-PLS model.
Peak 1 represents caffeine, peak-2-epigallocatechin gallate and peak 3 is
an unidentified substance, which is only clearly present in chromatograms

61 The RMS, RMSECV and RMSEP of this model are respec-
and 62.

tively 157, 114 and 171 mM, what corresponds to about 9%,

7% and 10% of the total range of the TEAC values, respec-
PLS model are indicated as dark spots on the reference chrodively. Taking into account the range of TEAC values and the
matogram used for the alignment. From this Figure, it can be precision of the TEAC method, which is found to be 143 mM
seen that the retained variables are selected from the peakgpooled SD), these results can be considered satisfactory. The
with retention times 3.0, 5.7, 6.4, 7.3, 8 and 9.1 min. Among PLS and UVE-PLS models are shownhig. 8a and b, re-
the uninformative variables there are baseline variables butspectively. Calibration samples are indicated@sand test
also variables from the caffeine peak and other peaks forsamples as (*). Itis seen that the PLS model allows a slightly
which we did not have standards to identify them. It is not better prediction of calibration samples, but the prediction of
unexpected that variables from the large caffeine peak (peaktest samples is comparable with the UVE-PLS model.
linFigs. 2b and yare not used in the UVE-PLS model since The results of modeling performed on the short chro-
in Section3.3it was shown that caffeine has no antioxidant matograms are shown rable b, the PLS regression coeffi-
capacity. The removal of baseline variables is obvious. The cients are shown iRig. 9. Both models, PLS and UVE-PLS,
UVE-PLS model seems to be more stable in terms of more have only three components. The UVE-PLS model, is based
constant RMS valuesTable J) and thus is to be preferred. on 119 of the 1000 original variables and results in better
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Fig. 8. Results of (a) the PLS model (eight factors) built with the 40 warped long calibration chromatograms, and (b) the UVE-PLS model (sevieuiliactors)
with the 40 warped long calibration chromatograms with 142 variables retainedalibration samples, *: test samples).
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predictions. The 119 retained variables are selected from thethorough comparison of the performance of these methods is
peak apexes at retention time 0.58 and 1.62 min and at retenbeing performed at the moment and will be reported later.
tiontimes 0.95, 1.1, 1.3 and 1.42 mikig§. 3). Although the

RMSECV and RMSEP of the PLS model are slightly higher, 4.6. TEAC prediction of new tea samples

i.e., 206 mM (12%) and 177 mM (11%), it can be concluded

that this model results in acceptable and stable predictions Inaproduction application one is interested in a quick pre-
of the TEAC values (RMSEP =11%). Generally, it is seen diction of the antioxidant capacity of new tea samples. New
that with the short chromatograms a less complex model is samples will be treated as follows. After removal of the first
obtained with a slightly higher cross-validation error than 200 un-informative sampling points (dead time), the chro-
with the long chromatograms. Moreover, it can be concluded matograms of new samples will be aligned using the same
that a baseline separation of the green tea extract compoundseference signal and COW input parameters as for the align-
is not required in order to obtain an acceptable calibration ment of the initial data set. As long as peak shifts in new
model between the chromatographic and TEAC method. A chromatograms do not increase compared to chromatogram
considerable gain of time can thus be achieved by using thel17, one can conclude that column ageing is minimal and thus
fast chromatographic method on monolithic silica columns most likely the sam#/ andr value can be used for the align-
and the above calibration models for the prediction of the ment of new samples. If not, one needs to re-optimize these

antioxidant capacity. input parameters for the new samples.
Then, the new chromatograms will be screened for lever-
4.5. PLS models built with reduced chromatograms age objects by robust PCA after adding them to the matrix of

the 110 initial chromatograms. The objects falling in quad-

The alignment of the long chromatograms took 13 s each rants two and three are retained, while objects in quadrants
signal, resulting in a total warping time of about 24 min. one and four need further inspection before removing them.
Considering the HPLC analysis time of one chromatogram If their orthogonal distance is significantly higher than for
(11 min), this computation time is acceptable but there might the original objects, they must be removed and cannot be
be cases where COW will require much higher computation predicted with the above models. However, when among the
times and then it can not be used for on-line applications any- new samples, there are many samples with high orthogonal
more. Therefore, it was investigated whether a reduction of distance, as seen for chromatograms 61 and 62 of the initial
the chromatogram length, by averaging successive samplingdata Figs. 1 and % one might consider to build a PLS model
points, results in a decreased warping time and in models withincluding these samples in the calibration and test sets to al-
still acceptable prediction errors. The length of the long chro- low a precise TEAC prediction of these samples as well. In
matograms was reduced six times (to 516 sampling points)that case, such samples are not considered atypical anymore.
and the chromatograms were warped using the earlier defined
input parameters\(= 60, 7= 3). The alignment took 19 min,
a reduction of only 5 min. However, by reducing the signal 5. Conclusions
length, smallelN values could be used. Wifti=30 andr = 3,
the computation time could be reduced to only 6 min. Then, In this paper a stable and reliable model is built, able to
a PLS and UVE-PLS model is built using the same calibra- predict the antioxidant capacity of green tea extracts (ex-
tion and test sets as above. The models contain seven angressed as the TEAC value) from fast chromatograms with
six factors, respectively, and in the UVE-PLS model, only 42 analysis times of 11 and 2 min obtained on monolithic silica
variables are retained from the 516. The plot with retained columns. The chromatograms were successfully aligned
chromatographic variables is very similafiiy. 7and there- with correlation optimized warping and used for multivariate
fore not shown. The same peak parts as for the unreduceccalibration as if they were spectra. The models built with
signals are found to be important for modeling. The RMS, PLS and UVE-PLS resulted in acceptable predictions of
RMSECV and RMSEP are shown ffable . The models  the antioxidant capacity. However, with UVE-PLS, many
for the reduced chromatograms are somewhat less complexuninformative chromatographic variables were eliminated
than for the original onesTable J and c). Moreover, the  and less complex models were obtained. It was found that
prediction error of the PLS and UVE-PLS models is at least the antioxidant capacity can also be predicted from fast,
equally good than for the original chromatograms. It can thus non-completely resolved chromatograms, or chromatograms
be concluded that models built with reduced chromatogramswith highly reduced sampling points, resulting in much
can be used for the TEAC prediction as well. shorter analysis times.

Nevertheless, the computation time with COW remains
rather long, even after data point reduction. Therefore it was
investigated whether faster aligning methods, as for instanceA cknowledgement
parametric time warpinfLl8,19], could be used. With PTW,
the chromatograms could be aligned within only 18s. How-  A.M van Nederkassel is grateful to the Fund for Scientific
ever, small differences in the warping quality were seen. A Research (FWO)-Flanders for financial support.
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